Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of quasi-supercontinuum laser linewidth and derivatives characteristics of InGaAs quantum dot broadband laser

Identifieur interne : 004F81 ( Main/Repository ); précédent : 004F80; suivant : 004F82

Modeling of quasi-supercontinuum laser linewidth and derivatives characteristics of InGaAs quantum dot broadband laser

Auteurs : RBID : Pascal:09-0420232

Descripteurs français

English descriptors

Abstract

We present the development of theoretical model based on multi-population rate equation to assess the broadband lasing emission in addition to the derivative optical gain and chirp characteristics from the supercontinuum InGaAs/GaAs self-assembled quantum-dot (QD) interband laser. The model incorporates the peculiar characteristics such as inhomogeneous broadening of the QD transition energies due to the size and composition fluctuation, homogeneous broadening due to the finite carrier lifetime in each confined energy states, and the presence of continuum states in wetting layer. We showed that the theoretical model agrees well with the experimental data of broadband QD laser. From the model, the broadband lasing characteristics can be ascribed to the large dispersion of QD with varying energy sub-bands and the change of de-phasing rate. These interesting characteristics can be attributed to the carrier localization in different dots that result in a system without a global Fermi function and thus an inhomogeneously broadened gain spectrum. Furthermore, our simulation results predict that the linewidth enhancement factor (α = 2) from the ground state (GS) in this new class of semiconductor lasers is slightly larger but in the same order of magnitude as the values obtained in conventional QD lasers. The calculated gain spectrum shows similar magnitude order of material differential gain (˜10-16 cm2) and material differential refractive index (˜10-20 cm3) as compared to conventional QD lasers. The comparable derivative characteristics of broadband QD laser shows its competency in providing low frequency chirping as well as a platform for monolithic integration operation.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0420232

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Modeling of quasi-supercontinuum laser linewidth and derivatives characteristics of InGaAs quantum dot broadband laser</title>
<author>
<name sortKey="Tan, C L" uniqKey="Tan C">C. L. Tan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Optical Technologies and Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive</s1>
<s2>Bethlehem, PA, 18015</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bethlehem, PA, 18015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>OptiComp Corporation, Zephyr Cove</s1>
<s2>NV, 89448</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nevada</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Djie, H S" uniqKey="Djie H">H. S. Djie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>JDS Uniphase Corporation</s1>
<s2>San Jose, CA, 95134</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>JDS Uniphase Corporation</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dimas, C E" uniqKey="Dimas C">C. E. Dimas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Optical Technologies and Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive</s1>
<s2>Bethlehem, PA, 18015</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bethlehem, PA, 18015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ding, Y H" uniqKey="Ding Y">Y. H. Ding</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Optical Technologies and Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive</s1>
<s2>Bethlehem, PA, 18015</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bethlehem, PA, 18015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hongpinyo, V" uniqKey="Hongpinyo V">V. Hongpinyo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Optical Technologies and Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive</s1>
<s2>Bethlehem, PA, 18015</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bethlehem, PA, 18015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Optical Technologies and Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive</s1>
<s2>Bethlehem, PA, 18015</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bethlehem, PA, 18015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ooi, B S" uniqKey="Ooi B">B. S. Ooi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Optical Technologies and Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive</s1>
<s2>Bethlehem, PA, 18015</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bethlehem, PA, 18015</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0420232</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0420232 INIST</idno>
<idno type="RBID">Pascal:09-0420232</idno>
<idno type="wicri:Area/Main/Corpus">004F53</idno>
<idno type="wicri:Area/Main/Repository">004F81</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier lifetime</term>
<term>Chirp</term>
<term>Energy band</term>
<term>Energy levels</term>
<term>Enhancement factor</term>
<term>Gallium Arsenides</term>
<term>Ground states</term>
<term>Indium Arsenides</term>
<term>Interband transitions</term>
<term>Line broadening</term>
<term>Line widths</term>
<term>Modelling</term>
<term>Monolithic integrated circuits</term>
<term>Multifrequency laser</term>
<term>Multimode laser</term>
<term>Optical gain</term>
<term>Quantum dots</term>
<term>Rate equation</term>
<term>Refractive index</term>
<term>Self-assembly</term>
<term>Semiconductor lasers</term>
<term>Supercontinuum</term>
<term>Ternary compounds</term>
<term>Transition energy</term>
<term>Wide band</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Elargissement raie</term>
<term>Laser multifréquence</term>
<term>Laser multimode</term>
<term>Laser semiconducteur</term>
<term>Circuit intégré monolithique</term>
<term>Autoassemblage</term>
<term>Largeur raie</term>
<term>Durée vie porteur charge</term>
<term>Niveau énergie</term>
<term>Etat fondamental</term>
<term>Indice réfraction</term>
<term>Bande énergie</term>
<term>Point quantique</term>
<term>Composé ternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Supercontinuum</term>
<term>Modélisation</term>
<term>Large bande</term>
<term>Equation vitesse</term>
<term>Fluctuation fréquence impulsion</term>
<term>Transition interbande</term>
<term>Energie transition</term>
<term>Facteur accroissement</term>
<term>InGaAs/GaAs</term>
<term>As Ga In</term>
<term>InGaAs</term>
<term>0130C</term>
<term>8560B</term>
<term>4255P</term>
<term>8560</term>
<term>Equation bilan transfert énergie</term>
<term>Gain optique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present the development of theoretical model based on multi-population rate equation to assess the broadband lasing emission in addition to the derivative optical gain and chirp characteristics from the supercontinuum InGaAs/GaAs self-assembled quantum-dot (QD) interband laser. The model incorporates the peculiar characteristics such as inhomogeneous broadening of the QD transition energies due to the size and composition fluctuation, homogeneous broadening due to the finite carrier lifetime in each confined energy states, and the presence of continuum states in wetting layer. We showed that the theoretical model agrees well with the experimental data of broadband QD laser. From the model, the broadband lasing characteristics can be ascribed to the large dispersion of QD with varying energy sub-bands and the change of de-phasing rate. These interesting characteristics can be attributed to the carrier localization in different dots that result in a system without a global Fermi function and thus an inhomogeneously broadened gain spectrum. Furthermore, our simulation results predict that the linewidth enhancement factor (α = 2) from the ground state (GS) in this new class of semiconductor lasers is slightly larger but in the same order of magnitude as the values obtained in conventional QD lasers. The calculated gain spectrum shows similar magnitude order of material differential gain (˜10
<sup>-16</sup>
cm
<sup>2</sup>
) and material differential refractive index (˜10
<sup>-20</sup>
cm
<sup>3</sup>
) as compared to conventional QD lasers. The comparable derivative characteristics of broadband QD laser shows its competency in providing low frequency chirping as well as a platform for monolithic integration operation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7211</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Modeling of quasi-supercontinuum laser linewidth and derivatives characteristics of InGaAs quantum dot broadband laser</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Physics and simulation of optoelectronic devices XVII : 26-29 January 2009, San Jose, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>TAN (C. L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WANG (Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DJIE (H. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DIMAS (C. E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DING (Y. H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HONGPINYO (V.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CHEN (C.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>OOI (B. S.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>OSI========Nacute;SKI (Marek)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Center for Optical Technologies and Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive</s1>
<s2>Bethlehem, PA, 18015</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>OptiComp Corporation, Zephyr Cove</s1>
<s2>NV, 89448</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>JDS Uniphase Corporation</s1>
<s2>San Jose, CA, 95134</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>72110X.1-72110X.9</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-7457-5</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000172957920220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0420232</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present the development of theoretical model based on multi-population rate equation to assess the broadband lasing emission in addition to the derivative optical gain and chirp characteristics from the supercontinuum InGaAs/GaAs self-assembled quantum-dot (QD) interband laser. The model incorporates the peculiar characteristics such as inhomogeneous broadening of the QD transition energies due to the size and composition fluctuation, homogeneous broadening due to the finite carrier lifetime in each confined energy states, and the presence of continuum states in wetting layer. We showed that the theoretical model agrees well with the experimental data of broadband QD laser. From the model, the broadband lasing characteristics can be ascribed to the large dispersion of QD with varying energy sub-bands and the change of de-phasing rate. These interesting characteristics can be attributed to the carrier localization in different dots that result in a system without a global Fermi function and thus an inhomogeneously broadened gain spectrum. Furthermore, our simulation results predict that the linewidth enhancement factor (α = 2) from the ground state (GS) in this new class of semiconductor lasers is slightly larger but in the same order of magnitude as the values obtained in conventional QD lasers. The calculated gain spectrum shows similar magnitude order of material differential gain (˜10
<sup>-16</sup>
cm
<sup>2</sup>
) and material differential refractive index (˜10
<sup>-20</sup>
cm
<sup>3</sup>
) as compared to conventional QD lasers. The comparable derivative characteristics of broadband QD laser shows its competency in providing low frequency chirping as well as a platform for monolithic integration operation.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Elargissement raie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Line broadening</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Laser multifréquence</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Multifrequency laser</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Laser multifrecuencia</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Laser multimode</s0>
<s5>12</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Multimode laser</s0>
<s5>12</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Laser multimodo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Circuit intégré monolithique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Monolithic integrated circuits</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Autoassemblage</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Self-assembly</s0>
<s5>30</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Largeur raie</s0>
<s5>41</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Line widths</s0>
<s5>41</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Durée vie porteur charge</s0>
<s5>42</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Carrier lifetime</s0>
<s5>42</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Niveau énergie</s0>
<s5>43</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Energy levels</s0>
<s5>43</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Etat fondamental</s0>
<s5>44</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ground states</s0>
<s5>44</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indice réfraction</s0>
<s5>45</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Refractive index</s0>
<s5>45</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Bande énergie</s0>
<s5>46</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Energy band</s0>
<s5>46</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Banda energía</s0>
<s5>46</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Supercontinuum</s0>
<s5>61</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Supercontinuum</s0>
<s5>61</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Supercontinuum</s0>
<s5>61</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>62</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>62</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Large bande</s0>
<s5>63</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Wide band</s0>
<s5>63</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Banda ancha</s0>
<s5>63</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Equation vitesse</s0>
<s5>64</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Rate equation</s0>
<s5>64</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Ecuación velocidad</s0>
<s5>64</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Fluctuation fréquence impulsion</s0>
<s5>65</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Chirp</s0>
<s5>65</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Fluctuación frecuencia impulso</s0>
<s5>65</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Transition interbande</s0>
<s5>66</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Interband transitions</s0>
<s5>66</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Energie transition</s0>
<s5>67</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Transition energy</s0>
<s5>67</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Energía transición</s0>
<s5>67</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Facteur accroissement</s0>
<s5>68</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Enhancement factor</s0>
<s5>68</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Factor incremento</s0>
<s5>68</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>InGaAs/GaAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8560B</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>8560</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Equation bilan transfert énergie</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Rate equation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Gain optique</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>Optical gain</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>306</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Physics and simulation of optoelectronic devices</s1>
<s2>17</s2>
<s3>San Jose CA USA</s3>
<s4>2009</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004F81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004F81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:09-0420232
   |texte=   Modeling of quasi-supercontinuum laser linewidth and derivatives characteristics of InGaAs quantum dot broadband laser
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024